一、用途: | |||
LWGY渦輪流量傳感器與顯示儀表配套組成渦輪流量計。傳感器具有精度高,重復(fù)性好,壽命長操作簡單等特點。可廣泛應(yīng)用于石油,化工,冶金,造紙等行業(yè)測量液體的體積瞬時流量和體積總量。 | |||
二、特點: | |||
◆ 壓力損失小,葉輪具有防腐功能。 ◆ 具有較高的抗電磁干擾和抗震動能力,性能工作壽命長。 ◆ 采用的超低功耗單片微機技術(shù),整機功能強,功耗低,性能。具有非線性精度補償功能的智能流量顯示器。修正公式精度優(yōu)于±0.02%。 ◆ 儀表系數(shù)可由按鍵在線設(shè)置,并可顯示在LCD屏上,LCD屏直觀清晰,性高。 ◆ 采用EEPROM對累積流量、儀表系數(shù)進行掉電保護。保護時間大于10年。 | |||
|
超聲波熱量表(DN15-40)
(C1)戶用超聲波式熱量表技術(shù)參數(shù) | |||||||||||||
型號 | 公稱口徑 | 最大流量 | 常用流量 | 最小流量 | 流量傳感器接口尺寸 | 流量傳感器接管尺寸 | 表體最小高度 | 表體最大高度 | 表體重量 | ||||
DN(mm) | qs(m3/h) | qp(m3/h) | qi(m3/h) | 無接管長度 | 接口螺紋 | 帶接管長度 | 螺紋有效長度 | 接管螺紋 | |||||
L(mm) | D(inch) | H(mm) | L2(mm) | D1(inch) | H(mm) | H1(mm) | kg | ||||||
RC15 | 15 | 3 | 1.5 | 0.03 | 130 | G3/4B | 225 | 14 | R1/2 | 100 | 150 | 0.7 | |
RC20 | 20 | 5 | 2.5 | 0.05 | 130 | G1B | 235 | 16 | R3/4 | 100 | 150 | 0.7 | |
RC25 | 25 | 7 | 3.5 | 0.07 | 160 | G11/4B | 280 | 18 | R1 | 110 | 160 | 1.5 | |
RC32 | 32 | 12 | 6 | 0.12 | 180 | G11/2B | 305 | 20 | R11/4 | 130 | 180 | 1.8 | |
RC40 | 40 | 20 | 10 | 0.2 | 200 | G2B | 328 | 22 | R11/2 | 140 | 190 | 2.5 | |
準確度等級 | 2級或3級 | ||||||||||||
壓力損失 | |||||||||||||
最大工作壓力 | 1.6MPa | ||||||||||||
熱(冷)耗計算 | 從0.25K開始 | ||||||||||||
溫度范圍 | +4 ~ +95℃ | ||||||||||||
溫差范圍 | 3 ~ 60℃(2 ~ 60℃ 需特殊定制) | ||||||||||||
溫度分辨率 | 0.01℃ | ||||||||||||
環(huán)境溫度 | A類 +5 ~ +55℃ | ||||||||||||
電池壽命 | ≥ 6年(鋰電池) | ||||||||||||
安裝方式 | 水平或垂直安裝 | ||||||||||||
熱(冷)載體 | H2O | ||||||||||||
溫度傳感器 | PT1000鉑電阻 | ||||||||||||
顯示位數(shù) | 8位 |
德國科隆KROHNE
德國科隆KROHNE電磁流量計
產(chǎn)品特點溫度、壓力、流量一體化設(shè)計,可提供在線溫度、壓力補償內(nèi)置溫度傳感器,可顯示現(xiàn)場介質(zhì)溫度 金屬墊密封,安全、可靠德國KROHNE公司計算軟件保證計算準確 測量精度高可通過按鍵設(shè)置所有應(yīng)用參數(shù)無可動部件,維護方便流量自診斷功能100%壓力測試,100%產(chǎn)品校驗多種技術(shù)認證保證質(zhì)量空氣、負壓、全量程標校技術(shù)參數(shù) 測量介質(zhì)類型 蒸汽、氣體、液體 口徑 DN25、DN40、DN50、DN80、DN100、DN150、DN200、DN250、DN300 介質(zhì)溫度 普通型:-20℃ ~ +240℃ 防爆型:-20℃ ~ +220℃ 環(huán)境溫度 普通型:-40℃ ~ +85℃ 防爆型:-40℃ ~ +65℃ 精度 液體,Re ≥ 20000時,為±0.75% 氣體和蒸汽,Re ≥ 20000時,為±1% 液體,氣體和蒸汽,10000〈 Re〈 20000時,為±2% 重復(fù)性誤差 ±0.5% 顯示 瞬時流量、渦街頻率、介質(zhì)溫度、介質(zhì)壓力 電源 24VDC 負載 Rmin=100Ω;Rmax=(Ub-14V)/22.4mA 電流輸出 兩線制4~20mA 防爆等級 EXd ia [ia] II CT6(ATEX 歐洲 );EXd ia II CT6(NEPSI上海) 電纜接口 M20*1.5(內(nèi)螺紋);1/2NPT(內(nèi)螺紋) 外殼房戶等級 IP66/67 連接類型 法蘭連接 (DN15~DN300) ; 夾持連接(DN15~DN100) 材質(zhì) 測量管:304 傳感器:316L 轉(zhuǎn)換器殼:鑄鋁 IFM4300C+F+W亮點:高精度,智能診斷型口徑:DN10-3000傳感器型號:IFS4300C,IFS4300F精度:0.2%-0.3%(液體中最多含30%的固體成分)IFM4080K+F(IFM4080K-Ex)亮點:智能型口徑:DN10-1600傳感器型號:IFS4000精度:≤0.3%(液體中最多含5%的固體成分)IFM4010K+F亮點:智能型口徑:DN10-1000傳感器型號:IFS4000精度:0.3%-0.8%(實際流量按口徑分)IFM3080K+F亮點:智能型(刮刀電極≥DN50)口徑:DN10-1600傳感器型號:M900精度:≤0.3%(液體中最多含5%的固體成分)K300亮點:模擬量型口徑:DN10-300傳感器型號:M900精度:≤1%K450亮點:模擬量型口徑:DN10-450傳感器型號:IFS4000精度;≤0.5%OPTIFLUX 1300亮點:夾持型口徑:DN10-150傳感器型號:OPTIFLUX 1000精度:0.2%OPTIFLUX 2300亮點:高精度,智能診斷型口徑:DN25-3000傳感器型號:OPTIFLUX 2000精度:0.2%-0.3%(液體中最多含30%的固體成分)OPTIFLUX 4300亮點:高精度,智能診斷型口徑:10-1000傳感器型號:OPTIFLUX4000精度:0.2%-0.3%(液體中最多含30%的固體成分)
OPTIFLUX5300(夾持或法蘭連接)亮點:陶瓷型口徑:DN2.5-100(夾持式)、DN15-250(法蘭式)傳感器型號:OPTIFLUX 5000精度:0.15%OPTIFLUX 6300亮點:衛(wèi)生型口徑:DN2.5-150傳感器型號:OPTIFLUX 6000精度:0.2%OPTIFLUX 4040亮點:兩線制口徑;DN10-150傳感器型號:OPTIFLUX 4000精度:0.5%TIDALFLUX 4110PF亮點:非滿管口徑:DN200-1600傳感器型號:IFS4000PF精度:非滿管v≥1m/s:≤1%(測量范圍) 滿管v≥1m/s:≤1%(測量值) v≤1m/s:≤0.5%(測量值)+5mm/sOPTIFLUX 7300亮點:電容式口徑:DN25-100傳感器型號:OPTIFLUX 7000
名稱: 德國HYDRO-BIOS公司生物網(wǎng)口流量計 類別: 網(wǎng)口流量計 型號: D-Flow 關(guān)鍵字: 生物網(wǎng)口流量計,數(shù)字流量計,網(wǎng)口流量計 產(chǎn)品簡介: 生物網(wǎng)口流量計用來測量通過浮游生物網(wǎng)的水的體積 供應(yīng)商: 青島水德儀器有限公司 |
詳細介紹 |
生物網(wǎng)口流量計(Flow Meter) 數(shù)字流量計訂購指南: 438 110 數(shù)字流量計(Digital Flow Meter) 用來測量通過浮游生物網(wǎng)的水的體積 5位機械式計數(shù)器 葉輪直徑:75mm 便捷的單點連接或雙點連接 水平拖網(wǎng)使用 438 115 數(shù)字流量計(Digital Flow Meter) 用來測量通過浮游生物網(wǎng)的水的體積 5位機械式計數(shù)器 葉輪直徑:75mm 便捷的三點連接 垂直拖網(wǎng)使用 帶逆行自動停止功能 代表文獻: 1.D. Schnack,1974.On the Reliability of Methods for Quantitative Surveys of Fish Larvae.The Early Life History of Fish.201-212. 2.S. Falk-Petersen and C.C.E. Hopkins,1981.Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: population dynamics of the euphausiids Thysanoessa inermis (Kröyer), Thysanoessa raschii (M.Sars) and Meganyctiphanes norvegica (M.Sars) in 1976 and 1977.Journal of Plankton Research.3(2): 177-192. 3.J. Lenz, D. Schnack, D. Petersen, J. Kreikemeier, B. Hermann, S. Mees and K. Wieland,1995.The Ichthyoplankton Recorder: A video recording system for in situ studies of small-scale plankton distribution patterns.ICES Journal of Marine Science.52(3-4):409-417. 4.A. Vandelannoote, H. Robberecht, H. Deelstra, F. Vyumvuhore, L. Bitetera, F. Ollevier,1996.The impact of the River Ntahangwa, the most polluted Burundian affluent of Lake Tanganyika, on the water quality of the lake.Hydrobiologia.328(2):161-171. 5.Epaminondas D. Christou,1998.Interannual variability of copepods in a Mediterranean coastal area (Saronikos Gulf, Aegean Sea).Journal of Marine Systems.15(1–4):523–532. 6.A. Vandelannoote, H. Deelstra, F. Ollevier,1999.The inflow of the Rusizi River to Lake Tanganyika.Hydrobiologia.407(0):65-73. 7.PEDERSEN L., JENSEN H. M., BURMEISTER A., HANSEN B. W.,1999.The significance of food web structure for the condition and tracer lipid content of juvenile snail fish (Pisces : Liparis spp.) along 65-72°N off West Greenland.Journal of Plankton Research.21(9):1593-1611. 8.H. Wennhage, L. Pihl,2001.Settlement patterns of newly settLED plaice (Pleuronectes platessa) in a non-tidal Swedish fjord in relation to larval supply and benthic predators.Marine Biology.139(5):877-889. 9.S. M. Moser, D. J. Macintosh,2001.Diurnal and lunar patterns of larval recruitment of Brachyura into a mangrove estuary system in Ranong Province, Thailand.Marine Biology.138(4):827-841. 10.Peter Beeck, Sandra Tauber, Stephanie Kiel, Jost Borcherding,2002.0+ perch predation on 0+ bream: a case study in a eutrophic gravel pit lake.Freshwater Biology.47(12):2359–2369. 11.Olafur S. Astthorsson and Astthor Gislason,2003.Seasonal variations in abundance, development and vertical distribution of Calanus finmarchicus, C. hyperboreus and C. glacialis in the East Icelandic Current.Journal of Plankton Research.25(7):843-854. 12.A.M.P. Santosa, A. Peliza, J. Dubertb, P.B. Oliveiraa, M.M. Angélicoa, P. Réc,2004.Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: a retention mechanism.Continental Shelf Research.24(2):149–165. 13.J.Hein M. van Lieverlooa, Dick W. Bosboomb, Geo L. Bakkerc, Anke J. Brouwera, Remko Voogta, Josje E.M. De Roosd,2004.Sampling and quantifying invertebrates from drinking water distribution mains.Water Research.38(5):1101–1112. 14.Chih-hao Hsieh, Chih-Shin Chen, Tai-Sheng Chiu,2005.Composition and abundance of copepods and ichthyoplankton in Taiwan Strait (western North Pacific) are influenced by seasonal monsoons.Marine and Freshwater Research.56(2):153–161. 15.Kwee Siong Tew, Wen-Tseng Lo,2005.Distribution of Thaliacea in SW Taiwan coastal water in 1997, with special reference to Doliolum denticulatum, Thalia democratica and T. orientalis.Marine Ecology Progress Series.292:181-193. 16.Tien-Hsi Fang, Jiang-Shiou Hwang, Shih-Hui Hsiao, Hung-Yu Chen,2006.Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast.Marine Environmental Research.61(2):224–243. 17.E. Gaard, A. Gislason, T. Falkenhaug, H. Søiland, E. Musaeva, A. Vereshchaka, G. Vinogradov,2008.Horizontal and vertical copepod distribution and abundance on the Mid-Atlantic Ridge in June 2004.Deep Sea Research Part II: Topical Studies in Oceanography.55(1–2):59–71. 18.Peter Thor1, Torkel Gissel Nielsen, Peter Tiselius,2008.Mortality rates of epipelagic copepods in the post-spring bloom period in Disko Bay, western Greenland.Marine Ecology Progress Series.359:151-160. 19.Cesar Vilas, Pilar Drake, Emilio Pascual,2009.Inter- and intra-specific differences in euryhalinity determine the spatial distribution of mysids in a temperate European estuary.Journal of Experimental Marine Biology and Ecology.369(2):165–176. 20.Enrique González-Ortegón, José A. Cuesta, Emilio Pascual, Pilar Drake,2010.Assessment of the interaction between the white shrimp, Palaemon longirostris, and the exotic oriental shrimp, Palaemon macrodactylus, in a European estuary (SW Spain).Biological Invasions.12(6):1731-1745. 21.Kesarkar, K.S., Anil, A.C.,2010.New species of Paracalanidae along the west coast of India: Paracalanus arabiensis.Journal of the Marine Biological Association of the United Kingdom.90(2):399-408. 22.Iskender Gülle, Ismail Ibrahim Turna, Salim Serkan Güçlü, Pinar Gülle, Zekiye Güçlü,2010.Zooplankton Seasonal Abundance and Vertical Distribution of Highly Alkaline Lake Burdur, Turkey.Turkish Journal of Fisheries and Aquatic Sciences.10:245-254. 23.Mianrun Chen, Bingzhang Chen, Paul Harrison, Hongbin Liu,2011.Dynamics of mesozooplankton assemblages in subtropical coastal waters of Hong Kong: A comparative study between a eutrophic estuarine and a mesotrophic coastal site.Continental Shelf Research.31(10):1075–1086. 24.Min-Chul Jang, Kyoungsoon Shin, Bonggil Hyun, Tongsup Lee and Keun-Hyung Choi,2013.Temperature-regulated egg production rate, and seasonal and interannual variations in Paracalanus parvus.Journal of Plankton Research.doi: 10.1093/plankt/fbt050. 更多關(guān)鍵字: 生物網(wǎng)口流量計,數(shù)字流量計,網(wǎng)口流量計, Digital Flow Meter,流量計 |
超聲波流量計原裝進口聚合物電池,鉅大電子公司是專業(yè)的聚合物電池生產(chǎn)廠家。
不同型號(特別是不同體積)的電池,他的容量越高,提供使用的時間越長.拋開體積和重量的因素,當然容量越高越好. 但是同樣的電池型號,標稱容量(比如600mAh)也相同,鋰離子電池實際測的初始容量不同:比如一個為660mAh,另一個是605mAh,那么660mAh的就比605mAh的好嗎. 實際情況可能是容量高的是因為電極材料中多了增加初始容量的東西,而減少了電極穩(wěn)定用的東西,其結(jié)果就是循環(huán)使用幾十次以后,容量高的電池迅速容量衰竭,而容量低的電池卻依然堅挺.許多國內(nèi)的電芯廠家往往以這個方式來獲得高容量的電池.而用戶使用半年以后待機時間卻是差得一塌糊涂. 民用的那些AA鎳氫電池(就是五號電池),一般18650鋰電池是1400mAh,卻也有標超高容量的(1600mAh),道理也是一樣. 其實:提高容量的代價就是犧牲循環(huán)壽命,廠家不在電池材料的改性上下文章,是不可能真正"提高"電池容量的
鉅大電子有限公司是一家研發(fā)、生產(chǎn)和銷售移動式電子設(shè)備充電電源的高新科技企業(yè),專業(yè)生產(chǎn)碳性電池、聚合物鋰電池、鎳氫電池、鋰電池組聚合物鋰電池、鋰電芯、圓柱形鋰電池、18650鋰電池、鋰電池組等環(huán)保電池。
測量原理: 電磁流量傳感器是基于法拉第電磁感應(yīng)定律而制成的,只是其中切割磁力線的導(dǎo)體不是一般的金屬而是具有一定電導(dǎo)率的液態(tài)流體或液固兩相流體。被測量的導(dǎo)電介質(zhì)在磁場中作切割磁力線運動時,導(dǎo)電介質(zhì)中會產(chǎn)生感應(yīng)電動勢,感應(yīng)電動勢由一對電極檢測,該電壓信號VE可用下式表示: | ||
技術(shù)參數(shù):
|
型號 | 口徑 | | |||||||
SKT LDE | 15~2600 | ||||||||
| | 代號 | 安裝形式 | | |||||
Y | 一體式 | ||||||||
F | 分體式 | ||||||||
| 代號 | 轉(zhuǎn)換器型號 | |||||||
JA | 圓形表頭 | ||||||||
JB | 方形表頭 | ||||||||
| 代號 | 輸出信號 | |||||||
F1 | 4-20Madc,負載≤750Ω | ||||||||
F2 | 0-3khz,5v有源,可變脈寬,輸出高端有效頻率 | ||||||||
F3 | RS485接口 | ||||||||
F4 | 控制輸出 | ||||||||
| 代號 | 防爆要求 | |||||||
N | 無防爆 | ||||||||
EX | 防爆(僅適用于分體式) | ||||||||
| 代號 | 介質(zhì)溫度 | |||||||
T1 | ≤65℃ | ||||||||
T2 | ≤120℃ | ||||||||
T3 | ≤180℃(僅適用于分體式) | ||||||||
| 代號 | 內(nèi)襯材質(zhì) | |||||||
C4 | 氯丁橡膠(≤65℃) | ||||||||
C1 | 聚四氟乙烯(≤189℃) | ||||||||
C3 | 聚氯乙烯(≤70℃) | ||||||||
| 代號 | 電極材質(zhì) | |||||||
316L | 不銹鋼 | ||||||||
HC | 哈氏合金C | ||||||||
HB | 哈氏合金B(yǎng) | ||||||||
Ti | 鈦 | ||||||||
Ta | 鉭 |